ISE 441 - Introduction to Simulation
In Class Quiz \#3b (Full Version)
1/23/12
NAME \qquad
Solution

THIS QUIZ IS CLOSED BOOK, CLOSED NOTES, OPEN CALCULATOR

You should pull up t-table from the course website and keep it on the screen for the duration of the quiz. Visiting other websites will result in a zero for this quiz. The screens are being monitored at the podium computer.

1. Suppose X is a discrete random variable with probability mass function given by:

$$
\begin{aligned}
& \mathrm{P}\{X=1\}=0.3 \\
& \mathrm{P}\{X=2\}=0.4 \\
& \mathrm{P}\{X=3\}=0.3
\end{aligned}
$$

a. Plot the PDF of X for all x in the range

b. Compute and plot the CDF of X for all x in the range

$$
P\{X \leq 1\}=0.3
$$

$$
P\{X \leq 2\}=0.7
$$

$$
\mathrm{P}\{X \leq 3\}=1.00
$$

c. Compute $\mathrm{P}\{1.5 \leq X \leq 3\}$

$$
\mathrm{P}\{X \leq 3\}-\mathrm{P}\{X \leq 1.5\}=1.00-0.3=\mathbf{0 . 7}
$$

d. Compute $\mathrm{P}\{1.5<X<3\}$

$$
\mathrm{P}\{X<3\}-\mathrm{P}\{X<1.5\}=0.7-0.3=\mathbf{0 . 4}
$$

e. Compute $\mathrm{E}[X]$

$$
\mathrm{E}[X]=0.3(1)+0.4(2)+0.3(3)=\mathbf{2 . 0}
$$

f. Compute the Variance and Standard Deviation of X

Method 1:
$\operatorname{Var}[X]=\left[1^{2}(0.3)+0^{2}(0.4)+1^{2}(0.3)\right]=\mathbf{0 . 6}$
$\operatorname{StDev}[X]=\operatorname{SQRT}(\operatorname{Var}[X])=\mathbf{0 . 7 7 5}$

Method 2:
$\mathrm{E}\left[X^{2}\right]=0.3\left(1^{2}\right)+0.4\left(2^{2}\right)+0.3\left(3^{2}\right)=4.6$
$\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=4.6-2^{2}=\mathbf{0 . 6}$
$\operatorname{StDev}[X]=\operatorname{SQRT}(\operatorname{Var}[X])=\mathbf{0 . 7 7 5}$
2. Suppose X has a continuous distribution where x has a minimum of 0 , a maximum of 5 , and the following PDF: $f(x)=C x^{2}$.
a. Compute the Constant C that makes this a valid PDF

$$
C \int_{0}^{5} x^{2} d x=1 \quad C\left[\frac{x^{3}}{3}\right]\left[\begin{array}{l}
5 \\
0
\end{array}=1 \quad C\left[\frac{5^{3}}{3}\right]=1 \quad \frac{3}{5^{3}}=\frac{3}{125}=0.024\right.
$$

b. Compute $\mathrm{P}\{X \leq 3\}$

$$
P(X \leq 3)=0.024 \int_{0}^{3} x^{2} d x=0.024\left[\frac{x^{3}}{3}\right] \begin{aligned}
& 3 \\
& 0
\end{aligned}=0.024\left[\frac{3^{3}}{3}\right]=0.216
$$

c. Compute $\mathrm{P}\{X<3\}$

$$
P(X<3)=P(X \leq 3)=0.216
$$

d. Compute $\mathrm{P}\{X>3\}$

$$
P(X>3)=1-P(X<3)=1-0.216=0.784
$$

e. Compute $\mathrm{P}\{X<2$ or $X>4\}$

$$
\begin{aligned}
& P(X<2 \text { or } X>4)=\left[0.024 \int_{0}^{2} x^{2} d x\right]+\left[0.024 \int_{4}^{5} x^{2} d x\right]= \\
& \left\{0.024\left[\frac{2^{3}}{3}\right]\right\}-\left\{0.024\left[\frac{5^{3}}{3}\right]-0.024\left[\frac{4^{3}}{3}\right]\right\}=0.064+[1-0.512]=0.552
\end{aligned}
$$

f. Compute $E[X]$

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x=0.024 \int_{0}^{5} x^{3} d x=0.024\left[\frac{x^{4}}{4}\right] \begin{aligned}
& 5 \\
& 0
\end{aligned}=0.024\left[\frac{5^{4}}{4}\right]=3.75
$$

3. Suppose that $6.5,6.2,8.8,7.6,8.9,10.1,9.0,10.0,6.0 \& 6.9$ are ten observations from a Normal Distribution with unknown mean and unknown variance. Compute the sample mean, sample variance, and $90 \%, 95 \%$, and 99% two-sided CI's on the population mean. You may use the link to the t-tables posted on the course website.

$$
\begin{aligned}
& \text { Mean }=(6.5+6.2+8.8+7.6+8.9+10.1+9.0+9.5+7.2+6.9) / 10=\mathbf{8 . 0} \\
& \text { Variance }=\left(1.5^{2}+1.8^{2}+0.8^{2}+0.4^{2}+0.9^{2}+2.1^{2}+1^{2}+2^{2}+2^{2}+1.1^{2}\right) / 9=2.413 \\
& \text { StDev }=1.553 \\
& \mathrm{t}_{0.05,9}=1.833 \quad \mathrm{t}_{0.025,9}=2.262 \quad \mathrm{t}_{0.005,9}=3.250 \\
& \\
& 90 \% \mathrm{CI}=8.0 \pm 1.833 *[1.553 / \mathrm{SQRT}(10)]=\mathbf{8 . 0} \pm \mathbf{0 . 9}=[7.1, \mathbf{8 . 9}] \\
& 95 \% \mathrm{CI}=8.0 \pm 2.262 *[1.553 / \mathrm{SQRT}(10)]=\mathbf{8 . 0} \pm \mathbf{1 . 1 1}=[\mathbf{6 . 8 9}, \mathbf{9 . 1 1}] \\
& 99 \% \mathrm{CI}=8.0 \pm 3.250 *[1.553 / \mathrm{SQRT}(10)]=\mathbf{8 . 0} \pm \mathbf{1 . 6 0}=[\mathbf{6 . 4} \mathbf{9} \mathbf{9 . 6}]
\end{aligned}
$$

